
Spring 2022

Class 07 - Control Flow Practice

Today's Goals

1. Announcements

2. Practice function writing

3. Practice function diagramming

Announcements

• EX03 - Released on Tuesday: Structured Wordle - Due Monday

• Tuesday 2/8: Watch async lessons in lecture and get help.
• Want to watch lecture content with help around? Bring your headphones and move

through content with UTAs around to answer questions!

• Thursday 2/10: Quiz 1 - Primary emphases: loops, logic, functions, lists

• Email Pairings in Sakai's PostEm Tab
• Copy BOTH of your UTAs on e-mails
• If you feel inclined to attach a screenshot or copy paste something-- come to office hours!
• UTAs (nor myself) can help with technical or code problems via e-mail.

Function #1

• Create a file in your lessons directory named love_functions.py

• Define a function with the following signature expectations:

1. Function Name: love

2. Parameters
• name: str

3. Return Type: str

4. Docstring: """Given a name as a parameter, returns a
loving string."""

• In the function body, have a single return statement:
• return f"I love you {name}!"

def love(name: str) -> str:
"""Given a name as a parameter, returns a loving string."""
return f"I love you {name}!"

Expected implementation:

How to use in the Python REPL:
• In the terminal, begin a Python REPL:

python
• Import the function:

>>> from lessons.love_functions import love
• Call it:

>>> love("Mom")
>>> love(", my dear friend")

Function #2
• Still in the same file lessons/love_functions.py, declare a function named spread_love,

with the following signature expectations:

1. Function name: spread_love
2. Two parameters:

• to: str
• n: int

3. Return type: str
4. Docstring: """Generates a string that repeats a loving message n

times."

• Implementation:

1. Declare a string variable named love_note and assign it the empty string.

2. Declare a counter variable that is initialized to zero.

3. Write a while loop that will iterate while your counter variable is less than your
parameter n. Don't forget to increment your counter variable!

4. Inside the while loop, concatenate love_note's current value to the result of calling
the love function with to as the argument, then concatenate "\n" for a line break.

5. After the while loop completes, return the generated love_note

def spread_love(to: str, n: int) -> str:
"""Generates a string that repeats a loving message n times."""
love_note: str = ""
i: int = 0
while i < n:

love_note += love(to) + "\n"
i += 1

return love_note

Expected implementation:

How to use in the Python REPL:
• In the terminal, begin a Python REPL:

python
• Import the function:

>>> from lessons.love_functions import spread_love
• Call it:

>>> spread_love("Mom", 100)
>>> print(spread_love("Mom", 100))

Challenge Question #1: What returned when the
following function definition is called with...
mystery(4)

def mystery(n: int) -> str:
"""A useless function."""
i: int = 0
while i < n:

if i % 2 == 1:
return "ooh"

i += 1
return "ahh"

Diagramming Practice

