(OMP
110

Spring 2022

Class 16 - Dictionary Practice and Sequences




Today's Goals

1. Practice with dictionaries
2. Sequences

3. Dictionaries vs. Sequences



Announcements

* Monday and Wednesday - Tutoring in Sitterson Lower Lobby
* Tonight: EXO06 - Dictionary Utils
* Regrade Requests via Gradescope

* Quiz Thursday 3/3: Lessons through Today's!



Diagram 1)
square_to_root: dict[int, int] = {}
i: int

square_to_root[i
i 1

print(square_to_root)

Check for understanding: why couldn't square to root be a list[int]?



Diagram #2 - Assume ___name___ s main

"""Helper functions imported elsewhere."""

def main() -> None:
game@: dict[str, int] {"KJ": 0, "ML": 1}
gamel: dict[str, int] {"ML": 2, "EwW": 3}
merged: dict[str, int] = merge(game®, gamel)
print(merged)

def merge(a: dict[str, int], b: dict[str, int]) —-> dict[str, int]:
"""Merge two dictionaries."""
result: dict[str, int] {}

key a:
result[key] = al[key]
key b:
result[key] = b[key]
result
__hame__ " __main__":

main()



Diagram #2

Assume name is" mailn .

"""Helper functions imported elsewhere."""

def main() -> None:
game@®: dict[str, int] {"KJ": @, "ML": 1}
gamel: dict[str, int] {"ML": 2, "EwW": 3}
merged: dict[str, int] = merge(game®, gamel)
print(merged)

def merge(a: dict[str, int], b: dict[str, int]) -> dict[str, int]:

"""Merge two dictionaries."""
result: dict[str, int] {}
key a:
result[key] = alkey]
key b:
result[key] b[key]
result

__name__ " main__":
main()




Lists vs. Dictionaries

* Create a grid on |
your paper: Same Different

* Fill in with your Lists
neighbors!

Dictionaries




Sequences /



VWhat Is a Sequence?
« An Abstract Data Type that is an ordered, O-indexed set of values.

» There are many specific fypesof sequences with their own properties.
Common, built-in sequence types in Python include:

str - a sequence of character data
List - a dynamically-sized sequence of values of a specific type
Tuple - a fixed-size sequence of values of any types

H Wb

range - a sequence of integers at intervals between a start and end



Tuples



Tuple Types

1. Tuples types are made of a specific, fixed-length sequence of any mixed type(s) by:
tuplel[typey, type;, ..., type,]
3. Typically you will want to alias your Tuple types to give them a more meaningful name

Examples:

Point2D = tuple[float, float]
Color = tuplel[int, int, int]
Player = tuple[str, float]

?f. I\l(ou construct a Tuple with a Tuple literal. Tuple variables of the above types could be initialized as
ollows:

origin: Point2D = (0.0, 0.0)
gray: Color = (128, 128, 128)
bacot: Player = ("Bacot", 5) 11



RANEES



Ranges of Integers

@ =0=0=0=0=0=pupmp=e=)

 What are the attributes of the range above?

» A start point that is inclusive
« A stop point that is exclusive

* A step that moves up by one



The range type models the idea of a Range

* range is a built-in sequence typein Python
« Justlike str, tuple,and list
« Arange value is immutable, like str and tuple
« Documentation: https://docs.python.org/3/library/stdtypes.html#ranges

» The range constructor returns a range object

 startis /inclusive.
» stopis exclusive
» step defaultsto 1 and is optional, as denoted by the brackets

14


https://docs.python.org/3/library/stdtypes.html#ranges

A range object has attributes

are named values bundled in an object

« Attributesrepresent the stateof an object
* Named like variables, unlike indexed items of a tuple or list. Attribute names are identifiers.

* Hold Values, also like variables, unlike methodswhich are special functions

» Attributes are accessed using the dot operator following the object:
[object].[attribute_name]

 Example:

>>> a_range:

>>> a_range
0
>>> a_range
10
>>> a_range
2

range = range(0, 10, 2)
.start

.stop

.step

stack frame

a_range |_/

* Therange object's attributes are read-only, making a range an /immutable object

range
start o)
stop 10
step 2

15




A range object is a sequence type

* You can access items in a range's sequence by its indexusing subscription:

* range[0], range[1], ..., range[N]

 Example:

>>> a_range: range = range(0, 100, 10)
>>> a_rangel[0]

0

>>> a_range[1]

10

>>> a_range[9]

20

>>> a_range[10]

stack frame

a_range L/

* Notice the rangeobject's state is only its three attributes
» Butas a sequence type, with subscription, it also behaves as if it is made of many more items.
* How? Abstraction! In this case the abstraction of a range is fully represented by just three attributes.

» This abstraction is possible through arithmetic
evaluates to

range

start 0
stop 100
step 10

16




