(OMP
110

Spring 2022
Class 19 - Union Types, Default Parameters, OOP Practice

Announcements

« RDO1 Posted Monday - Weapons of Math Destruction
e Due Sunday 4/10

« EXO8 Posted Yesterday - Analysis for Continuous Improvement
e Due Tuesday 3/29
* Requires completion of EXO7 - Finish this up ASAP and hand-in late!

* QZ03 moved back by one week

* This unit's focus on Object-oriented Programming needed more time.
 New Date: Thursday, April 7th
» Taking with ARS? Reschedule your quiz reservation TODAY!

Hack 110

« Optional 2-day Event Aimed at Prospective Majors
 Work in teams of up to 2 people
 Need a teammate? Meet peers in the workshop!
* For street credit only, not for course credit. Great for resume building!

* Friday, April 1st from 6pm to 8pm - Required Workshops!
 Web Development - How to make an interactive web page with Flask, HTML, CSS
 Game Development - How to build a game with Pygame

* Friday, April 8th from 7pm to 7am - Hackathon
» Additional workshops
* Fun events
* Food and more!

 RSVP for HACK110 Workshop + Hackathon required by end-of-day TODAY
 https://bit.ly/hack11022s

https://www.youtube.com/watch?v=GT2Hb-XK06c

class Dog:

name: str Dlagram 1

def __init__(sel#, name:

.name = name Produce an environment diagram
def speak(self) -> str: Of the COde ||St|ng Ieft

£ i .name}: woof"
class Cat:
name: str

def __init__(self, name: str):
.hame = name

def speak(self) —> str:

i .name;f: meow"

fido: Cat = Cat("Cleo")
leo: Dog = Dog("Loki™)

print(fido.speak())
print(leo.speak())

class Dog:
name: str

def __init__(sel#, name: str):
.name = name

def speak(self) —> str:
"4 .name;}: woof"
class Cat:

name: str

def __init__(self, name: str):
.hame = name

def speak(self) —> str:

i .name;f: meow"

fido: Cat = Cat("Cleo")
leo: Dog = Dog("Loki™)

print(fido.speak())
print(leo.speak())

from __ future__ import annotations

Diagram 2

class Point:
"""Model a 2D Point."""

Produce an environment
x: float .
y: float diagram of the code
listing left.

def __init__ (self, x: float, y: float):
"""Initialize a Point with its x, y components."""

self.x
self.y

X
y

def scale_by(self, factor: float) -> None:
"""Mutates: multiplies components by factor.
self.x *= factor

self.y *= factor

def scale(self, factor: float) -> Point:
"""Pure method that does not mutate the Point."""
scaled: Point = Point(self.x * factor, self.y * factor)
return scaled

pe: Point = Point(1.6, 2.0)
pe.scale_by(2.0)
pl: Point = p@.scale(2.0)

print(f"pe: (({pe.x}, {pe.y})) - pl: ({pl.x}, {pl.y})")

from _ future__ import annotations

Point:
"""Model a 2D Point."""

x: float
y: float

__init_ (self, x: float, y: float):
"""Initialize a Point with its x, y components."""

self.x = x
self.y = y

scale_by(self, factor: float) ->

"""Mutates: multiplies components by factor.
self.x *= factor

self.y *= factor

scale(self, factor: float) -> Point:

"""Pure method that does not mutate the Point.
scaled: Point = Point(self.x * factor, self.y * factor)
return scaled

pe: Point = Point(1.8, 2.9)

p@.scale_by(2.0)

pl: Point = p@.scale(2.0)

print(f"pe: (({pe.x}, {p@.y})) - pl: ({pl.x}, {pl.y}H")

